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Abstract

We begin with a random design nonparametric regression having random predictors and Gaussian errors.

We produce a convenient, easily implementable mapping of this problem into a Gaussian infinite dimensional

location problem. Such an infinite dimensional problem can reflect a Fourier, or wavelet, or other orthogonal

basis representation of the original regression situation. In this way it may be easier to analyze than the original

regression formulation. There is considerable literature on doing this; beyond describing the situation we do not

pursue here this issue of the analysis of such infinite dimensional models. For most of our results the random

regressors in our theory may have either a known or unknown distribution.

The correspondence we produce between the regression and location problems is an asymptotic equivalence

mapping. (We also explicitly describe the converse mapping from the location problem to the regression.) Thus

any solution to a statistical problem in one formulation can be easily converted to a solution for the other

formulation.

The basic mapping from the regression to location formulations involves a few steps. First, bin the regression

observations and use the bin averages to compute an empirical infinite series transform. Then truncate this series

appropriately. Add a small amount of prescribed Gaussian noise to the truncated series coefficients. Then use a

subset of these to linearly predict the remaining tail coordinates of the infinite series. In many applications the

latter two steps are not necessary even though they are needed for an explicit asymptotic equivalence mapping.
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1 Introduction

Over the preceding decades nonparametric regression has become a standard, frequently employed

statistical model. Early results for this model and its close relation, nonparametric density esti-

mation, appear in Rosenblatt (1956), Parzen (1962), Nadaraya (1964) and Watson (1964). Within

the last two decades a variety of inferential methods have been developed and implemented for this

model. Various important extensions and generalizations have also been formulated. Monographs

such as Härdle (1990), Wahba (1990), Fan and Gijbels (1996), Loader (1999) and Efromovich

(1999) contain extensive treatments.

Many methods for these models are based on orthogonal series expansions or are closely related

to such expansions. Examples include methods based on damped or truncated Fourier series (See,

e.g., Efromovich and Pinsker (1984), Eubank and Speckman (1991).), smoothing splines (Wahba

(1990)), and wavelets (Donoho and Johnstone (1995, 1998)). In many cases these methods rely

on an asymptotic idealization of the problem in terms of an orthogonal series expansion. A recent

monograph by Johnstone (2000) develops the theory given such an expansion.

The orthogonal series models are mathematically natural objects. They can often be easily

manipulated to produce desirable nonparametric inferential procedures such as asymptotically

minimax estimators and adaptive versions of such procedures. See Donoho (1994) for some general

theory, and the references cited earlier for some specifics.

These infinite dimensional models have intuitive appeal and manipulative convenience. Hence

it is valuable to know when nonparametric regression problems can automatically be reduced to

such infinite dimensional location problems, and to provide a simple algorithm for doing so. Such

an algorithm and the accompanying results are the focus of this paper.

The standard nonparametric regression model can be formulated in either a fixed design or a

random design version. The difference relates to whether the predictor variables (Xi) are non-

random or are independent random variables. See for example Antoniadis, Gregorie and McKeague

(1994) or Brown and Low (1996). The equivalence formulation in Brown and Low (1996) is

satisfactory for the fixed-design case, especially when the predictor variables are evenly spaced.

As suggested there it is less satisfactory for the random-design case. In the present paper we

concentrate only on the random-design model.
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The goal is to describe the algorithm and then establish asymptotic equivalence in the strongest

possible statistical sense between the nonparametric regression and its accompanying infinite di-

mensional location problem. This strong statistical sense is a global version of the metric for

statistical experiments developed by Le Cam (1953, 1963, 1986). In our applications this is a

consequence of uniform convergence in the L1 metric of appropriate probability densities. Hence

here it can be directly described and validated.

This type of asymptotic convergence is much stronger than other familiar notions such as

convergence in distribution or convergence in asymptotic risk for a specific loss function. These

weaker notions suffice for some but not all statistical applications. The more demanding type of

convergence we pursue naturally requires somewhat more restrictive conditions and more care in

its validation.

The statistician begins with a nonparametric regression problem involving observation of (Xi, Yi),

i = 1, . . . , n, where Yi are conditionally Gaussian with E(Yi|Xi) = f(Xi). Assume X ∈ [0, 1],

partly for convenience. Some sort of inference concerning f is desired, e.g. an estimate, test, or

confidence band. At the same time it is known how to produce a satisfactory inferential solution to

the related infinite dimensional location problem. This state of affairs often comes about because,

as already noted, such infinite dimensional location problems are often easier to analyze than their

regression counterparts.

The infinite dimensional location problem involves an index n and observation of Gaussian

variables Zn1, Zn2, . . .. Typically, Zni ∼ N(θi, 1/n), independent, but as we shall see other Gaussian

distributions may sometimes arise. The {θi : i = 1, . . .} are related to f by

θi =

∫ 1

0

f(t)ϕi(t) dt (1)

where the {ϕi} are the Fourier or other basis elements of the Hilbert space. Let δn(Zn) denote

the satisfactory inferential solution given Zn = {Zni : i = 1, . . .}. The algorithm described below

in (i) - (iii) produces an empirical series Z̃n = {Z̃ni : i = 1, . . .} as a function of the regression

observations {Xi, Yi}. The equivalence guarantees that for f ∈ F and any sequence of measurable

subsets, {Dn}, of the inference space

|Pf (δn(Zn) ∈ Dn) − Pf (δn(Z̃n) ∈ Dn)| → 0 (2)
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uniformly for f ∈ F . Consequently δn(Z̃n) will asymptotically have the same desirable asymptotic

properties for the nonparametric regression as did δn(Zn) in the series problems.

We propose a simple empirical series re-expression of the nonparametric regression problem in

Section 4.1. This can be described in three steps:

(i) Construct a conditionally unbiased empirical version of the first m(n) orthogonal series coef-

ficients. Here m(n) = o(n1−ε) as in (19). The formula for this is (20), (21).

(ii) Add a very small amount of Gaussian noise. This is described in (35). As explained in

remarks following Theorem 5.1 this step should be unnecessary in most application of theory

even though it seems to be needed for formal validity of the theorems in which it appears.

(iii) Replace the remaining coefficients by non-informative normal variables having the appropriate

covariance structure. This is explained in (26) for the case where X are uniform and in Section

5.3 and formula (100) for the more general case.

The converse asymptotic equivalence going from the series to the regression problem is described

in Section 5.3.

An alternative to (iii) for the general case is to use procedures that depend only on the first

m(n) coordinates of the series expression. It follows as a consequence of Theorem 5.2 that no

asymptotically useful information is lost because of such a restriction.

All these steps need to be done in the appropriate way. In particular, the counterexample

in Section 3.1 shows it is not suitable to replace step (i) by using the most intuitive marginally

unbiased, empirical orthogonal series coefficients.

In order to derive concrete results of the type we desire for nonparametric regression it is

necessary to make some minimal assumptions about the space of allowable regression functions.

For this purpose we introduce in Section 2.5 the familiar Hilbert space norm of functions of

smoothness α. We assume the set F of allowable regression functions satisfies F ⊂ Sα(B) where

Sα(B) is a bounded ball in such a space.

In particular, space Sα(B) can be generated from Fourier series (or their close relatives) or

from wavelet bases, yielding Besov-Hilbert spaces. For the case of Fourier type bases we can prove
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asymptotic equivalence when α > 1/2. For the Besov setting we require α > 1 for full equivalence;

but see (3) below for description of an alternative formulation.

In the case of Besov bases we cannot prove (2) to hold for our empirical series when 1/2 < α � 1.

However we can prove an only marginally weaker property that we feel should suffice for nearly all

practical applications. We describe this property in Section 6 where we call it asymptotic relative

sufficiency. It involves an index n∗(n) with n∗(n) < n but n∗(n)/n → 1. Then

|Pf (δn∗(Zn∗) ∈ Dn) − Pf (δn∗(Z̃o
n) ∈ Dn)| → 0. (3)

Here Z̃o
n = Z̃n + V∗

n where V∗
n is an independent mean 0 Gaussian infinite series having the

covariance operator explicitly described in (78). (3) says that one can conveniently construct from

{Xn, Yn} an inferential procedure that behaves like δn∗(Zn∗). Since n∗/n → 1 such a procedure

will usually be operationally equivalent asymptotically to what is obtainable from δn(Zn).

For the case of smoothness α � 1/2 equivalence of the form (2) cannot hold. This follows from

Brown and Zhang (1998). This is also the case for asymptotic relative sufficiency.

As already noted, we consider the case where the Xi are a random sample from some distribution

H on [0, 1]. Our results hold when H has a density h ∈ Sα(B), α > 1/2. Most of them for cases

where H is known or unknown, except that somewhat more stringent smoothness assumptions are

needed on h when H is not known.

Transformations from the regression problem to the series problem occur frequently in the

literature. We remark here on two recent treatments that have some relation to our approach.

These are the formulation in Efromovich (1999; equation (4.2.5)), referred to as E, and in Donoho

and Johnstone (1999), referred to as DJ. Both formulation refer primarily to the problem of

estimating the regression functions under specific losses; and so in this way are less general than

our formulation. In both of these, the loss is unbounded; hence the results involve matching the

normalized limiting risks in the regression and series problems. By contrast, our results apply

directly only to risks under bounded normalized loss functions. This directly yields statements

about asymptotic risks, but not about limiting risks. However standard techniques allow one to

extend such results to unbounded losses, although these techniques require focusing on specific

classes of losses or procedures. See Brown and Low (1996) for some further discussion.

E refers to a Fourier series type of formulations; DJ to a wavelet formulation. Both transfor-
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mations are different from ours, though that in E is somewhat closely related. (His analog of our

step (i) uses a rectangular kernel, rather than the fixed bins we use; it may be possible to adapt

our results to such a kernel step, but we have found our formulation convenient for our proofs and

it is also perhaps slightly easier to implement. As another difference E uses a logarithmic rate

bandwidth for his kernel step rather than the slightly larger polynomial rate bins we use. It may

be that our (otherwise more general) results could be extended to allow such narrower bin widths

but we have been unable to do so.)

The approach in DJ is more specifically tailored to wavelets, and so appears to be less closely

related to our formulation or that in E. It may be of interest to note that DJ contains a random-

ization step analogous to our (ii). E does not, but this is probably related to the specific nature of

the estimation goals and procedures there. See our Remark 5.5 for further discussion. Neither E

nor DJ need to include a step like our (iii) since they each use only suitably truncated procedures

in their respective series problems. The wavelet approach in DJ apparently allows their results to

apply to a broader range of function spaces than those in our Section 4.4.

2 Nonparametric formulations

2.1 Nonparametric regression

One observes (Xi, Yi), i = 1, . . . , n. The Xi are independent random variables on a bounded set.

Assume X = [0, 1] ⊂ R1. They have distribution function H on X . Given Xi = xi the real

variables Yi can be written as

Yi = f(xi) + εi, (4)

with εi independent N(0, σ2) random variables. Throughout we assume H is absolutely continuous

with bounded derivative h, and satisfies inf
x∈X

h(x) � ε for some known value ε > 0.

We assume σ2 is known. Without further loss of generality we take σ2 = 1. Generalization to

the case where σ2 is unknown and may depend on xi are possible but for the sake of brevity will

not be pursued here. The basic results should also extend readily to X = [0, 1]d ⊂ Rd.

The model (4) is referred to as “nonparametric” because the regression function, f , is only

assumed to lie in a suitable infinite dimensional class of functions F . Assume F ⊂ L2 = {f :
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∫
f 2(t)dt < ∞}. For most applications it is necessary to formulate some further restrictions on

F in order to obtain suitable results. This is also true of the equivalence results to follow. These

assumptions take the form of smoothness restrictions on F and will be discussed in Section 2.4.

2.2 Infinite dimensional location problem

In this problem one observes an infinite sequence of independent normal random variables Zn =

{Znj, j = 1, 2, . . .} with Znj ∼ N(θj, σ
2/n). The parameter vector θ = {θj, j = 1, . . .} is assumed

to lie in a (large) subset Θ of R∞.

Let ||θ||2 denote the usual �2 norm of θ whenever this is finite, i.e.

||θ||2 =
∞∑

j=1

θ2
j .

Let �2 = {θ : ||θ||2 < ∞}. We assume throughout that Θ ⊂ �2, and will generally need to also

make additional assumptions.

The appearance of n in the variance, σ2/n, can be understood as follows. Consider n inde-

pendent observations of infinite dimensional vectors {Wkj : j = 1, . . .}, k = 1, . . . , n, with each

Wkj ∼ N(θj, σ
2), independently. Then Zn = {Znj = 1

n

∑n
k=1 Wkj, j = 1, . . .} is a sufficient statis-

tic for the experiment involving observation of Wkj, j = 1, . . . ; k = 1, . . . , n. For this reason we

refer to n as the sample size in this setting. With no loss of generality we set σ2 = 1 throughout

the remainder of the paper.

The preceding definitions are suitable for matching to the regression problem where H is the

uniform distribution on [0, 1]. They will be generalized in Section 5.1.

As is well known this formulation is isomorphic to a problem involving white-noise with drift.

See Brown and Low (1996).

For the purpose of (asymptotically) matching this location problem to the nonparametric re-

gression problem start with a given orthonormal basis, {ϕj} of L2[0, 1]. Then define the functional

connection

θj =

∫ 1

0

f(t)ϕj(t) dt = 〈ϕj, f〉. (5)

7



2.3 Wavelet Series

Wavelet series are orthogonal expansions in L2. For an introduction to wavelets in a statistical

context see Donoho, et.al. (1994, 1995, 1998) or Cai (1999). In the usual format a wavelet basis

for [0, 1] would be a complete orthonormal set of functions in L2 with additional structure. This

set of functions for given K ≥ 0 consists of {ϕK,m, m = 0, . . . , 2K − 1; ψk,m, k = K + 1, . . . , m =

0, . . . , 2k−1−1}. (The functions ϕK,m are often referred to as father wavelets and the ψk,m as mother

wavelets.) Note that ϕK,m(t) = 2K/2ϕ(t − m/2K), and the ψk,m are also expressible in terms of

ϕ. Let θK,m = 〈ϕK,m, f〉, θk,m = 〈ψk,m, f〉, k = K + 1, . . . ; ZK,m = 〈ϕK,m, dZn〉 and Zk,m =

〈ψk,m, dZn〉, k = K + 1, . . .. Then Zk,m ∼ N(θk,m, 1/n), k = K, . . . ,m = 0, . . . , (2k−1) ∨ (2K − 1),

correspond to an infinite dimensional location problem with parameter space Θ ⊂ {θ = {θk,m}}.
The Haar basis has properties that make it convenient for certain of our results. In this basis

ϕj,k(x) = 2j/2I[k/2j ,(k+1)/2j)(x)

and

ψj,k = (ϕj,2k+1 − ϕj,2k)/
√

2,

k = 0, . . . , 2j−1 − 1.

The above double indexing system is convenient for discussions involving wavelets, and we will

sometimes use it in this context. However it is desirable for a unified treatment of all infinite

dimensional location problems to have a unified notation for such problems. For purposes of our

general treatment we will write such a model as Z = {Zj : j = 1, . . .} and θ = {θj : j = 1, . . .},
etc.. A wavelet problem with {θk,m}, etc., can be transferred to this form by the simple device of

writing j = jk,m = 2k −2K +m+1 for k = K, . . . ; m = 0, . . . , (2k−1 ∨ (2K −1)). Consequently our

general theory applies to wavelet series as well as to orthogonal series in the more conventional

single index form, such as Fourier series.

2.4 Sobolev and Besov Spaces

Let α > 0 and let {cj : j = 1, . . .} be a sequence of non-negative constants satisfying cj � j2α.

(i.e. for some ε > 0, εj2α < cj < ε−1j2α, j = 1, ...) The corresponding Sobolev or Besov-Hilbert
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ball is

Sα(B) = {θ : ||θ||2α �
∑

cjθ
2
j < B}. (6)

The entire space is of course, Sα = Sα(∞).

If {ϕj} is the Fourier cosine basis {ϕj(t) = (
√

2)sgn(j−1) cos(π(j − 1)t), j = 1, . . .} and α

is an integer then Sα corresponds to bounded functions whose (α − 1)th derivative is absolutely

continuous and who satisfy

π−2α

∫ 1

0

f 2(t)dt +

∫ 1

0

(f (α)(t))2dt < ∞. (7)

If we further take cj = (j − 1)2α then the left side of (7) is exactly π2α||θ||2α. The Sobolev space

Sα, α > 0, is a natural generalization. (One can use the usual sine-cosine basis to get a similar

representation for periodic functions.)

If {ϕj} corresponds to a wavelet basis, then Sα corresponds to a Besov-Hilbert space and

the sets Sα(B) are balls within that space. For more about Besov spaces see the previously cited

references about wavelets. In either case, sets such as Sα(B) are a convenient vehicle for controlling

the smoothness properties of the corresponding functions. For convenience we will also use the

notation Sα(B) to refer to the corresponding set of functions in situations like the above.

We will assume throughout that the basis elements satisfy

|ϕj(x)| � C
√

j j = 1, . . . (8)

for some generic C < ∞. The usual Fourier and wavelet bases satisfy this assumption. In addition,

for certain results, but not for others, we will need to make the stronger assumption that |ϕj(x)|
is bounded, as follows.

Assumption B: The functions |ϕj| are uniformly bounded in both j and x.

This assumption is satisfied by the Fourier basis and other related bases. It is not satisfied by

the usual wavelet bases.

The following standard example is included here and discussed later in more detail in order

to emphasize how the series problem can be conveniently manipulated to construct attractive

statistical estimators. See Donoho, et.al. (1995) and other wavelet references for more information.

Example 2.1: Suppose ({ϕK,m}, {ψk,m}) is a compactly supported differentiable wavelet basis
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and F ⊂ Sα(B) for some α > 1/2, B < ∞. Consider an estimator of θ with coordinates given by

θ̌k,m =


Zk,m if k ≤ K0

sgn(Zk,m)(|Zk,m| − λn)+ if k > K0 and 2k ≤ n

0 if 2k > n

(9)

where λn =
√

2(log n)/n. It is now well known that this estimator is within a factor of the order

of log n of being asymptotically minimax under squared error, independent of α. (Donoho and

Johnstone (1995).)

To close this discussion we want to emphasize an additional feature of the above procedure,

namely that it is non-linear. Verification of the asymptotic minimax property involves non-linear

features of the normal distribution. In particular, it uses the fact that lim
n→∞

P ( sup
1≤j≤n

|Zj| >√
2(log n)/n ) = 0 when Zj ∼ N(0, 1/n), independent. (This implies that if θ = 0 then

lim
n→∞

P (θ̌ = 0) = 1.)

Estimators adaptively achieving the minimax rate or the rate and its constant can also conve-

niently be determined in this context. See for example Donoho and Johnstone (1995), Cai (1999),

Zhang (2000) and Cai, Low and Zhao (2000). These estimators are more prominently non-linear

than θ̌ in the preceding example.

Remark: We have assumed the {ϕj} are orthogonal on [0, 1]. We take advantage of this fact to

simplify certain arguments. However it is not necessary. It is fairly straightforward to generalize

results to bases {ϕj} that satisfy a condition∫ 1

0

ϕj(t)ϕk(t)g(t) dt = 0 if j 
= k

for some g satisfying ε < g < 1/ε. Some other bases {ϕj} may also be accommodated with some

additional case.

3 Asymptotic Equivalence and Dominance

The objective of this paper is to derive a simple explicit asymptotic equivalence mapping taking

the nonparametric regression problem to the infinite dimensional location problem. In this pre-

liminary section we describe the nature of the desired mapping and provide some other necessary

10



information related to asymptotic equivalence. We begin with a counter example intended to help

motivate our objective. This example shows that an intuitively natural mapping fails to have

the desired properties. The example also helps explain the features of the equivalence definition

adopted later in this section.

3.1 Counterexample

Consider the nonparametric regression setting of Section 2.1. Assume H is the uniform distribu-

tion. An equivalence mapping would use {(Xi, Yi)} to produce an infinite vector ẐZZ, say, having

asymptotically identical statistical properties to ZZZ in the infinite dimensional location problems.

In particular the coordinates of ẐZZ should asymptotically satisfy

√
n(Ẑj − θj) → N(0, 1) (10)

in distribution where θj = 〈f, ϕj〉 and where the Ẑj are also asymptotically independent in a

suitable fashion.

An intuitive attempt to achieve this might involve defining the empirical coefficients

Ẑj =
1

n

n∑
i=1

ϕj(Xi)Yi. (11)

With this definition

E(Ẑj) = E(ϕj(X)Y ) =

∫
ϕj(x)f(x) dx = θj (12)

exactly as desired. However,

nVar(Ẑj) = E(Var(ϕj(X)Y |X)) + Var(E(ϕj(X)Y |X)) (13)

=
∫

ϕ2
j(x) dx +

∫
(ϕj(x)f(x) − ∫ ϕj(t)f(t) dt)2 dx

= 1 + ∆j(f),

say, where ∆j(f) ≥ 0, and ∆j(f) > 0 unless ϕj(x)f(x) is a constant. Hence (10) is not generally

valid. A similar calculation would also show that the Ẑj need not be asymptotically uncorrelated,

contrary to what is desired. See also Efromovich (1999, p.128).
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3.2 Asymptotic Equivalence

The following definition of asymptotic equivalence entails (10) but is stronger in important re-

spects. Let Ẑn be a possibly randomized function of {(Xi, Yi) : i = 1, . . . , n}. In much of what

follows we will for convenience suppress the dependence on n from the notation, and just write

Ẑ = Ẑn. The distribution of {(Xi, Yi)} of course depends on f ∈ F . We consider Z = Zn to be

the infinite dimensional observation in the infinite dimensional location problem with θ = θ(f)

having coordinates θj = 〈ϕj, f〉, j = 1, . . . . Let GẐ and GZ denote the distributions of Ẑ and Z

on R∞. We say Ẑ is asymptotically equivalent to Z if

||GẐ − GZ||Total Variation −→ 0 (14)

uniformly for f ∈ F .

A consequence of (14) is that if Tn is any sequence of random variables then Tn(Ẑ) and Tn(Z)

strongly converge to each other in distribution, uniformly for f ∈ F . For Tn real-valued (14) can

be rewritten as

lim
n→∞

sup
Tn

sup
f∈F

sup
b∈(−∞,∞)

|Pf (T (Ẑ) < b) − Pθ(f)(T (Z) < b)| = 0. (15)

Note that this convergence is considerably stronger than (10). Suppose that the coordinates

of Ẑ are independent, or are asymptotically independent in an appropriate sense, and (10) holds

uniformly in j = 1, . . .. Then a version of (15) follows in which the supremum over Tn is restricted

to uniformly bounded linear functionals of Z. However (15) would not necessarily follow for

general, non-linear functionals. In view of the increasing importance of non-linear functionals, as

suggested by Example 2.1, it is desirable to obtain equivalence in the stronger sense of (14) or

(15).

Equivalence as defined here is an alternative version of the previously mentioned notion of

asymptotic statistical equivalence as defined by Le Cam (1953, 1964, 1986). It is equivalent to

the following statistical formulation. Let D denote the set of all decision procedures on an action

space and let L denote the set of non-negative loss functions on that space bounded by 1. Then

sup
δ∈D

sup
L∈L

sup
f∈F

|Ef (L(δ(Ẑ), f)) − Eθ(f)(L(δ(Z),θ(f)))| −→ 0 (16)

as n → ∞.
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In practice, it is convenient to verify (14) via probability densities. Let gZn , gẐn
denote the

probability densities of Zn and Ẑn with respect to some common dominating measure. (This

dominating measure may depend on n.) These densities also depend on f ∈ F . Then (14) holds

if and only if

||gẐ − gZ||L1 −→ 0 uniformly for f ∈ F as n → ∞. (17)

We will use the notation {Ẑn} ≈ {Zn} to describe such an equivalence.

3.3 Equivalence for Gaussian Experiments

Suppose Vn and Wn are d dimensional Gaussian random variables with means νn,ωn, respectively,

and covariance matrices Σn/n and Bn/n, respectively. Assume Σn has eigenvalues uniformly

bounded below by C−1 for some C > 0. Let gVn and gWn denote their densities. Then a direct

calculation yields

||gVn − gWn||2L1
≤ 8{n||νn − ωn||2C − tr[(I − Σ−1

n Bn)2]}. (18)

See Brown, Cai, Low and Zhang (1999). The same inequality holds for infinite dimensional

Gaussian variables with means ν̃n, ω̃n and covariance operators Σn/n and Bn/n.

This simple inequality will later be applied to prove Z
(d)
n and Ẑ

(d)
n are asymptotically equivalent

in the sense of (17), where Z
(d)
n = {Zni : i = 1, . . . , d} and similarly for Ẑ

(d)
n . (Here, d may depend

on n.)

3.4 Notation; Asymptotic Equivalence and Sufficiency

Let {Vn} and {Wn} be the observations in two sequences of statistical problems having the same

parameter space Θ. If there are functions νn such that distθ(Wn) = distθ(νn(Vn)) for all θ ∈ Θ,

then of course for each n Vn is sufficient for Wn. Sufficiency for each n also holds if νn is a

randomized map. We will write Vn :→ Wn to denote the situation where Vn is sufficient for Wn

for each n.

In Section 3.2 we introduced an asymptotic notion of equivalence. In this notion {Vn} ≈ {Wn}
if their distribution satisfy (14) or, equivalently, if their densities satisfy (16). (For notational

convenience we will also write this as Vn ≈ Wn, and similarly for other similar notation.) These
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two situations can be combined, as follows. Suppose Vn :→ W ′
n and W ′

n ≈ Wn. Then we say {Vn}
is asymptotically sufficient for {Wn} and write {Vn} � {Wn}.

In the sequel we will establish results about asymptotic equivalence and asymptotic sufficiency.

In connection with these results the forms of the relevant (randomized) maps {νn} will be estab-

lished alongside. In this way our results will enable explicit construction of procedures of the form

δn(νn(Vn)) that have the same asymptotic performance characteristics (in the sense of (16)) as

those of the form δn(Wn).

Our emphasis is thus on verifying (16) in a manner that allows explicit construction. See

Example 2.1 (cont.) in Section 5.2 for further discussion.

4 Construction and Basic Results for Uniform H

4.1 Preliminarily Binned Estimators

The construction is built upon a sequence m = m(n) −→ ∞ such that

m(n)

n1−ε
−→ 0 for some ε > 0. (19)

Additional assumptions about m are described following (23), below.

Let Ik = [(k − 1)/m, k/m], k = 1, . . . ,m. This creates a preliminary binning of [0, 1) into bins

of length 1/m. For k = 1, . . . ,m let

Nk = #{Xi ∈ Ik}, Y k =
1

Nk

∑
Xi∈Ik

Yi

Φk = m

∫
Ik

Φ(x) dx where Φ = {ϕj : j = 1, . . .}. (20)

(Y k are of course the empirical averages of those Yi whose Xi are in the kth bin. The jth coefficient

of Φk is the average of ϕj over the kth bin. The choice of m will guarantee that all Nk > 0 with a

probability exponentially close to 1. In the rare case that some Nk = 0 the above definitions need

minor modification. Any well-defined modification suffices from a theoretical perspective, but a

pragmatically satisfying choice would be to let Y k then be a weighted average of neighboring

values Y k′ having Nk′ > 0.) Let Φ
(m)

= {Φk : k = 1, . . . ,m}, an m × 1 vector, and define
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Z̃ = Z̃n =
1

m(n)

m(n)∑
k=1

Y kΦk. (21)

Z̃n has coordinates (Z̃n)j = Z̃nj.

Define the stepwise averaged regression functions fm by a formula analogous to (20):

fm(x) = m

∫
Ik

f(t) dt for x ∈ Ik k = 1, . . . ,m. (22)

Where convenient we sometimes write f in place of fm.

The assumptions for subsequent results are related to this binning step. For most results we

need to assume m(n) satisfies (19) and

n

∫ 1

0

(f(t) − fm(n)(t))
2dt −→ 0, uniformly for f ∈ F . (23)

Section 7 discusses the situations where either {ϕj} is a Fourier basis or a compactly supported

wavelet basis. It is shown in Lemmas 7.1 and 7.2 that if F ⊂ Sα(B) for some α > 1/2 then m

can be chosen to satisfy both (19) and (23), and will satisfy

m(n)

n1/2α
−→ ∞. (24)

In Theorem 5.1 we need to make a stronger assumption to deal with wavelet bases. We assume

there that (23) is satisfied by m = m(n) such that

m(n)

n1/2−ε
−→ 0. (25)

It also follows from Lemma 7.2 that this condition can be satisfied by wavelet bases whenever

F ⊂ Sα(B) for α > 1. (Theorem 6.1 does not require this stronger assumption.)

For other orthogonal bases one may need to directly assume that (23) is satisfied as well as

F ⊂ Sα(B) for some α > 1/2.

4.2 Truncation to m coordinates

The Z̃n of (21) asymptotically provide an almost entirely satisfactory substitute for the Zn of the

original infinite dimensional location model. (This contrasts with the counterexample in Section

3.1, where the Ẑn do not.) However, a preliminary truncation step is also needed. The necessity
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for such a step should be intuitively clear, since the coefficients of Z̃n are linear functions of the

m values {Y k : k = 1, . . . ,m}. Thus, for J > m, the coordinates {Z̃nj : j = m + 1, . . . , J}
will usually be linear functions of Z̃

(m)
n = {Z̃nj : j = 1, . . . ,m}. This strongly contrasts with the

situation for Zn where {Znj : j = m + 1, . . . , J} is independent of Z
(m)
n = {Znj : j = 1, . . . ,m}.

This difference is not a serious problem since as we now show {Znj : j = m+1, . . . , } do not carry

any asymptotically useful information about f ∈ F .

For each n, let {Tj : j = 1, . . .} be an independent auxiliary sequences of independent Gaus-

sian random variables with Tj ∼ N(0, 1/n). For notational convenience we have suppressed the

dependence of T on n. Then define Zo
n to have coordinates

Zo
nj =

 Znj j = 1, . . . ,m

Tj j = m + 1, . . .
(26)

The following lemma shows that no asymptotically useful information is lost in passing from

Zn to Z◦
n.

Lemma 4.1 Assume H is uniform. Let α > 1/2 and let F ⊂ Sα(B). Assume m = m(n) satisfies

(24). Then {Z(m)
n } � {Zn} according to {Z(m)

n } :→ {Z◦
n} ≈ {Zn}.

Proof: Z◦
n and Zn each have independent Gaussian coordinates with variance 1/n. By properties

of Sα they also satisfy

n ||E(Z◦
n) − E(Zn)||2 =

∞∑
j=m+1

θ2
j ≤ O

(
n

m2α

∞∑
j=m+1

cjθ
2
j

)
−→ 0 (27)

since n/m2α → 0 by assumption (24). The assertion that Z◦
n ≈ Zn then follows from (18). The

remaining assertion concerning is trivial since Z◦
n is produced from Z

(m)
n by the randomizations

described in (26). �.

4.3 Asymptotic equivalence for H uniform

Many current applications of our theory involve uniform H. This situation is also notationally

simpler than the case of general H and Lemma 4.1 makes possible a slightly more convenient

conclusion. Consequently we state a special version here of our theorem even though this is really

a special case of the more general result in the next section. To save duplication we defer the
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major part of the proof of Theorem 4.1 to the next section, where it will follows as a special case

of Theorem 5.1.

Theorem 4.1 Assume H is uniform and (23) holds. Assume F ⊂ Sα(B) for some fixed, known

values of α, B. Let m(n) be any sequence satisfying (24) and the following:

If Assumption B also holds assume α > 1/2 and (19) holds.

If Assumption B does not hold assume α > 1 and (25) holds.

Then

{Xi, Yi : i = 1, . . . , n} :→ {Z̃n} :→ {Z̃(m)
n } ≈ {Z(m)

n } � {Z◦
n} ≈ {Zn} (28)

Proof: The first map in (28) is given by (20),(21). The second is a simple truncation. The last

two parts of (28) are described in (26) and proved in Lemma 4.1. The assertion that Z̃
(m)
n � Z

(m)
n

follows as a special case of Theorem 5.1. That theorem also describes a randomized map that

explicitly yields this assertion of asymptotic sufficiency. �

5 Basic results, general H

For the situation where H is not uniform the definition of the location problem involving Z needs

to be generalized. The definitions of Z̃n, m = m(n) and Z̃
(m)
n remain exactly as before. The main

theorem of this section shows that Z̃
(m)
n and Z

(m)
n are asymptotically equivalent under suitable

assumptions like those in Theorem 4.1.

In Section 5.3 we show that Z(m) is asymptotically equivalent to Z. However, in many situations

one can proceed to directly develop results and theory based only on Z(m). This seems in any case

a fairly natural course of action since m(n)/n → 0 only slowly and so to use only Z(m) usually

does not prove a serious practical limitation.

5.1 The general location problem

Let Φ = {ϕj : j = 1, . . . , } denote the infinite dimensional column vector of basis functions ϕj.

We continue to assume that these basis functions are orthonormal in the usual L2[0, 1]. (This

assumption is convenient but could be somewhat relaxed.)
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Define a covariance operator (matrix) via the infinite dimensional matrix formula

M =

∫ 1

0

Φ(t)Φ′(t)
1

h(t)
dt (29)

Let M(m) denote the upper left m×m submatrix of H. (Recall that inft h(t) � ε > 0, so M is

well defined.) Then define Zn to be the infinite dimensional Gaussian vector with

E(Zn) = θ, cov Zn = M/n. (30)

See Kuo (1975) and Mandelbaum (1984) for existence and properties of such infinite dimensional

random variables.

As before we interpret the coordinates of θ according to (12). To motivate the definition of M

note that the conditional covariance matrix of Z̃
(m)
n given Nk is

condcov(Z̃(m)
n ) =

1

m2
E(
∑ 1

Nk

Φ
(m)

k (Φ
(m)

k )′|{Nk}) (31)

where Φ
(m)

k is the m-dimensional column vector with coordinates

(Φ
(m)

k )j = m

∫
Ik

ϕj(t) dt, j = 1, . . . ,m.

Consequently

condcov(Z̃(m)
n )ij =

Mij

n
(1 + op(1)) (32)

as n → ∞. A second related motivation may be found through the white-noise equivalence result

in Brown and Low (1996).

5.2 Main Theorems, known H

When H is known a result like Theorem 4.1 and its corollary continues to hold to relate Z̃(m) and

Z(m). We assume below that h satisfies a condition like (23), that is

n

∫
(h(t) − hm(n)(t))

2dt � B for all n. (33)

Theorem 5.1 Assume H is a known function and satisfies (33). Make the other assumptions of

Theorem 4.1, and let m(n) be as in that theorem. Then with Z as in (30)

{Xi, Yi : i = 1, . . . , n} :→ {Z̃n} :→ {Z̃(m)
n } � {Z(m)

n }. (34)
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The final step in (34) is described more concretely by

{Z̃(m)
n + V (m)

n } ≈ {Z(m)
n } (35)

where

Vn ∼ Nm(0, A(m)
n /n) independent of Z̃(m)

n

with

A(m)
n = M(m) −

∫
1

h(t)
Φ

(m)
(t)(Φ

(m)
(t))′ dt (36)

Remark 5.1: Formula (36) and the randomization step (35) can be described in alternative

ways. For example, let hk = h(k/(m + 1)) and Φk = Φ(k/(m + 1)). Then two other descriptions

of A are

A(m)
n =

∫
1

h(t)
(Φ(t) − Φ

(m)
(t))(Φ(t) − Φ

(m)
(t))′ dt (37)

= M(m) − 1

m

m∑
k=1

1

hk

Φ
(m)

k (Φ
(m)

k )′.

Formulas (37) and (83) show that when H is uniform and {ϕj} is a Fourier basis then A is a

diagonal matrix.

Remark 5.2: The randomization in (35) can also be implemented as follows: Assume for

convenience that L = n/m is an integer. Generate auxiliary independent standard normal random

variables {Wkl : l = 1, . . . L, k = 1, . . . m}. Let

Y ∗
kl =

1√
hk

(Wkl − Wk·) + Y k, k = 1, . . . ,m, l = 1, . . . , L. (38)

Let X∗
kl, l = 1, . . . , L be independent uniform variables on Ik, k = 1, . . . , m. Then define

Z̃(m)∗
n =

1

n

m∑
k=1

L∑
l=1

Φ(m)(X∗
kl)Y

∗
kl. (39)

It can be checked directly that {Z̃(m)∗
n } ≈ {Z̃(m)

n + V
(m)
n }.

Remark 5.3: It may be computationally more convenient to use a binned version of M. Define

M =
1

m

∑ 1

hk

Ψk (40)

where Ψk = m
∫

Ik
Φ(t)Φ′(t) dt. Then calculations like those in the proof of the theorem show that

M may be substituted for M in the statement of the theorem.
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Remark 5.4: In the case where H is uniform Theorem 4.1 shows that {Z(m)
n } � {Z◦

n} ≈ {Zn}
in addition to (34). Theorem 5.2 below, shows that {Zn} � {Z̃(m)

n }. Thus in the special case

when H is uniform the randomization contained in the relation {Z̃(m)
n } � {Z(m)

n } does not lose

any asymptotically useful information. This pleasant state of affairs holds for general H as well,

also as a consequence of Theorem 5.2.

Remark 5.5: Suppose one has satisfactory procedures δn(Z
(m)
n ) under some asymptotic crite-

rion. Then the theorem says that δn(Z̃
(m)
n + V

(m)
n ) will have the same asymptotic distributional

properties, uniformly over f ∈ F . Note that the term V
(m)
n represents a very small amount

of additional noise added to Z̃(m). In many situations δn(Z̃
(m)
n ) can be shown to have the same

asymptotic distribution as δn(Z̃
(m)
n + V

(m)
n ). In this case δn(Z̃

(m)
n ) is somewhat simpler to use and

is asymptotically entirely satisfactory. The following is a very simple illustration.

Example 2.1 (cont.) In most current literature orthogonal series estimators are defined for

the independent coordinates situation of Section 2.2. The present correlated coordinates setting

is a variant that will often require additional considerations. Such consideration are beyond the

scope of our paper, and we include here only a few remarks about the simplest of such situations.

It appears that theory for linear estimators can easily be generalized. This includes kernel

estimators for predetermined non-adaptive bandwidths and smoothing spline estimators with

non-adaptive weight functions. This could be accomplished either by directly calculating the

distributions of the proposed estimators or by linearly transforming the problems via the map-

ping Z → M−1/2Z. One computational problem with the latter approach is that it may require

knowledge of properties of M−1/2F . Even if F has convenient properties such as orthosymmetry

(see Donoho, Liu and MacGibbon (1990)) it need not be the case that M−1/2F also has these

properties.

It seems that much of the theory for coordinatewise projection estimators can also be generalized

in a relatively straightforward fashion. This is because the performance of these estimators depends

primarily on only the diagonal terms Σii. For example, it appears one should begin by modifying

the formula (9) to redefine
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θ̆k,m =


Zkm, if k � K0

sgn(Zkm)(|Zkm| − λn,km)+ if K > K0 and 2k � n

0 if 2k > n

where λn,km =
√

Σkm,km

√
2(log n)/n. This formula could also be truncated by setting θ̆km = 0

for 2k > m(n). It can easily be checked there is no asymptotic loss of precision if this is done.

It is also easy to check that this estimator has asymptotically identical performance when Z̃
(m)
n

is used in place of Z̃
(m)
n +V

(m)
n . The key fact is that var[(Z̃

(m)
n )j]/var[(Z̃

(m)
n )j +(V

(m)
n )j] → 1, along

with the coordinatewise structure of θ̆.

Proof of Theorem 5.1: The first step of the proof is to verify that the problem with hm,

fm in place of h, f is asymptotically equivalent to the original problem. Let q (qm, respectively)

denote the density of X,Y under h, f (h, f). Thus

q(x, y) = h(x)ϕ(y − f(x)). (41)

with qm defined similarly but with h, f in place of h, f . According to standard results involving

the Hellinger metric the asymptotic equivalence will follow if

nH2
n = n

∫
(q1/2(x, y) − q1/2

m (x, y))2 dx dy → 0. (42)

(See Brown and Low (1996).). Then

nH2
n � 2n

[∫
(h1/2(x) − h

1/2

m (x))2 dx (43)

+

∫ ∫
(ϕ1/2(y − f(x)) − ϕ1/2(y − f(x)))2 dy h(x) dx

]
(44)

� 2n

[(
1

4ε

)∫
(h(x) − hm(x))2dx +

(
C

4

)∫
(f(x) − fm(x))2 dx

]
(45)

here, C = supx∈X hm(x) � supx∈X h(x). It follows from (23) and (33) that nH2
n → 0, as desired.

Consequently when deriving results about the asymptotic distribution, uniformly over f ∈ F , we

may calculate these distribution as if the true densities are h, f for f ∈ F .

Similar reasoning shows that the family of distributions of Z, under h, f is asymptotically

equivalent to the same family over hm, fm, for f ∈ F . See Brown and Low (1996) for details.
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Under h, f the statistics {Nk, Y k : k = 1, . . . ,m} are sufficient for {Xi, Yi : i = 1, . . . ,m}.
Under h, f and conditional on {Nk : k = 1, . . . ,m} the distribution of Z̃

(m)
n is multivariate normal.

It has mean matrix

Θ
(m)

= Eh,f (Z̃
(m)
n ) =

∫
Φ

(m)
(t)f(t)dt = Eh,f (Z

(m)
n ).

It has covariance matrix

Σ(m) =
1

m2

∑ 1

Nk

Φ
(m)

k (Φ
(m)

k )′. (46)

Consider, the matrix D, say, where

D =
1

m

∑ 1

hk

Φ
(m)

k (Φ
(m)

k )′ − Σ(m) (47)

=
1

m

∑
(

1

hk

− 1

mNk/n
)Φ

(m)

k (Φ
(m)

k )′. (48)

Note that the Nk are multinomial (n, h). Hence, in particular, E(mNk/n) = h and var(mNk/n) =

m/n.

Let ν be any vector in R(m) with ||ν|| = 1. Under Assumption B (uniform boundedness of |ϕj|)
we have that ν ′Dν is asymptotically normal with mean 0 and variance

1

m2

∑ 1

h
2

k

(ν ′
kΦ

(m)

k )2m

n
= Op(

1

n
). (49)

If ν is an eigenvector of D we thus have that the corresponding eigenvalue, λ, satisfies

λ2 = (ν ′Dν)2 = Op(1/n). (50)

Bearing in mind that D is an m × m symmetric matrix and m = O(n1−ε) we have

tr D2 =
m∑

k=1

(eig D)2
k → 0. (51)

It follows from (18) that Z̃
(m)
n ≈ Z∗

n, say, where Θ
(m)

is m−dimensional normal with mean Φ
(m)

and covariance matrix
1

m

∑ 1

hk

Φ
(m)

k (Φ
(m)

k )′.

The expression (37) then shows that A
(m)
n is positive semidefinite and yields (35). This completes

the proof when Assumption B holds.

22



In case Assumption B fails we take m(n) = O(n1/2−β) for some sufficiently small β > 0.

The equivalence reduction to h, f is still valid, since, now, α > 1. We now use the fact that

ϕj(x) = O(
√

j) uniformly in j, x by (8). The reasoning at (49) then yields for an individual

eigenvalue

λ2 = Op(
m

n
) (52)

in place of (38). Thus,

tr D2 → 0 (53)

since now D is m × m with m = O(n1/2−β). The proof can now be completed as before. �

5.3 The converse; full equivalence

The main result in Theorem 5.1 shows how to begin with the nonparametric regression and arrive

at the series problem Z
(m)
n with no asymptotic loss of effectiveness. Two further results are needed

in order to guarantee suitability of this process. The asymptotic mapping

{Z(m)
n } � {Zn} (54)

guarantees that knowledge of {Z(m)
n } is asymptotically as effective as knowledge of {Zn}. And the

mapping

{Zn} � {Xi, Yi : i = 1, . . . , n} (55)

completes the circle by establishing that no asymptotic capability has been lost in the transition

{Xi, Yi} � {Zn}.
In particular, Theorem 5.1 and (54) and (55) means that if an asymptotic minimax result is

desired in a problem with observations {Xi, Yi} then one may solve this problem using either

{Z(m)
n } or {Zn}. The asymptotic minimax solution derived in {Z(m)

n } or in {Zn} will then have

the same asymptotic minimax property for {Xi, Yi} because of (54), (55).

The maps in (54) and (55) can be explicitly described, although they are somewhat harder

to implement than those in (34). Further the main impact of (54) and (55) is to guarantee

no asymptotic loss of effectiveness in the maps (34); we doubt (1) and (2) will need to often

be explicitly implemented. Hence we only state the main converse theorem here but defer the

description of these maps to Section 7, along with the proof.
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Additional regularity conditions on {ϕj} seem to be needed. In order to allow for wide generality

we state an abstract technical form of these assumptions here. In Lemmas 7.3 and 7.4 we show

these assumptions are satisfied by Fourier basis under a very mild condition on h. It is easy to

check they are also satisfied by the Haar wavelet basis under a similar condition on h. We believe

they are also satisfied for a wide range compactly supported wavelet bases under the conditions

of Theorem 5.1 so long as h−1 is sufficiently smooth.

The proof in Section 7, as well as the technical assumption below requires introduction of a

sequence m∗ = m∗(n) that satisfies the assumptions of Theorem 4.1, including (23), and also

m∗(n)

m(n)
→ 0. (56)

Let M = {Mij} be as in (28). We need to assume

{
∞∑

j=(m+m∗)/2

m∗∑
i=1

+
∞∑

j=m

(m+m∗)/2∑
i=1

}M2
ij → 0 (57)

We also need to assume

{Φ̄k : k = 1, . . . ,m is a linearly independent set of vectors } (58)

for every sufficiently large n. As noted, Assumptions (57) and (58) are easily checked for Fourier

bases and they seem also to be true for all the familiar wavelet and orthogonal polynomial bases.

Theorem 5.2 Assume H is known. Let the assumptions of Theorem 5.1 be satisfied. Then (57)

implies (54) and (58) implies (55). The randomized mapping corresponding to (54) is described in

(100). The mapping corresponding to (55) is also explicitly described in the proof of the theorem

in Section 7.

5.4 Main Theorem, Unknown H

Only the final step (iii), of the equivalence construction involves knowledge of h = H ′. This

is needed in order to define the covariance matrix M that appears in the definition (46) of the

auxiliary variable Vn. Under suitable assumptions it is possible to replace the true M by an

estimated value, M̂, and still achieve the conclusion of Theorem 5.1.
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For the results here we have found it necessary to assume h is known to lie in a Hölder ball

of suitable smoothness. The smoothness assumption on h is thus somewhat more restrictive than

that on f . This seems to be appropriate for most applications, and so this assumption seems to

us not to be a significant constraint.

Definition: Let 〈γ〉 = max{k : k an integer, k � 0, k < γ}. The Hölder ball of smoothness

γ and radius B on [0, 1] is defined as the set of continuous functions, f , possessing continuous

derivatives of order 〈γ〉 that satisfy |f(y)| < B and∣∣∣∣∣∣f(y) −
〈γ〉∑
j=0

f (j)(x)
(y − x)j

j!

∣∣∣∣∣∣ � B|y − x|〈γ〉+1 (59)

for all x, y ∈ [0, 1]. Let Hγ(B) denote this set. Note that Hγ(B) ⊂ Sγ(B) when {ϕj} is a Fourier

basis.

When γ > 1/2, ε > 0 and B are given and h is known to satisfy h ∈ Hγ(B) and h � ε > 0 (as

in (1)) then it is possible to use X1, . . . , Xn to construct an estimate ĥn satisfying ĥn ∈ Hγ(2B)

and for any β > 0

E( sup
x∈[0,1]

(ĥn(x) − h(x))2) = O(n− 2γ
(1+2γ)

+β) (60)

uniformly for h ∈ Hγ(B). For example, one may use a standard kernel estimator with bandwidth

the order of n−1/(1+2γ). See, for example, Fan and Gijbels (1996).

Define

M̂ =

∫ 1

0

Φ(t)Φ′(t)
1

ĥ(t)
dt (61)

and define V̂n ∼ N,(0, Â
(m)
n /n) where

Â(m)
n =

[
M̂(m) −

∫
1

h(t)
Φ

(m)
(t)(Φ

(m)
(t))′ dt

]
+

=

[
M̂(m) − 1

m

m∑
k=1

1

hk

Φ
(m)

k (Φ
(m)

k )′ dt

]
+

. (62)

(Here A+ denotes the positive definite part of A. Thus if A = Q′DQ with Q orthogonal and D

diagonal then A+ = Q′D+Q where (D+)ii = (Dii)+. )

The analog of Theorem 5.1 is as follows. Note that that conditions below on h and on α are

somewhat more restrictive than in the earlier theorem.

Theorem 5.3 Let γ > 1/2, ε > 0, B be given. About H, assume it is known only that h ∈ Hγ(B).

Make the other assumptions of Theorem 5.1, including the assumptions about m(n). Assume also
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that

m(n) = O(n2γ/(2γ+1)−β) (63)

for some β > 0. Then

{Xi, Yi : i = 1, . . . , n} :→ {ĥn, Z̃n} :→ {ĥn, Z̃n} ≈ {ĥn,Z
(m)
n } � {Z(m)

n }. (64)

The final step in (34) is given more precisely by

{Z̃(m)
n + V̂ (m)

n } ≈ {Z(m)
n }. (65)

with V̂
(m)
n as in (62).

Remark: If α = γ then m(n) satisfying the conditions of the theorem exists if and only if

α = γ > (1 +
√

5)/4 (66)

If α > 1, as required when Assumption B is not satisfied then since γ > 1/2 condition (5.3) is

automatically satisfied.

Remark: It is easy to check that one may also use ĥ in defining M̂. Thus, if it is more

convenient one may use M̂ in place of M̂ in the above formulas, where

M̂ =
1

m

∑ 1

ĥk

Ψ
(m)

k

with Ψ as in (40).

Proof: Theorem 5.1 shows that {Z̃(m)
n +V

(m)
n } ≈ {Z(m)

n }. So Theorem 5.3 will be proved when

it is shown that {Z̃(m)
n + V̂

(m)
n } ≈ {Z̃(m) + V

(m)
n }. According to (18) it will suffice to show

tr (I(m) − (M(m))−1M̂(m))2 → 0 in probability (67)

uniformly over h ∈ Hγ(B). The eigenvalues of M(m) are uniformly bounded away from 0 and ∞
since

∫
(Φ(t)Φ′(t)) dt = I and since 1

B
� 1

h(t)
� 1

ε
for some ε > 0. Hence (67) will follow if (and

only if)

tr (M(m) − M̂(m))2 → 0 in probability (68)

uniformly over h ∈ Hγ(B).
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Let ν be a unit vector in R(m). Then,

ν ′(M(m) − M̂(m))ν =

∫ (
1

h(t)
− 1

ĥn(t)

)
ν ′Φ(t)Φ′(t)ν dt (69)

� sup
x∈[0,1]

∣∣∣∣∣ 1

h(x)
− 1

ĥn(x)

∣∣∣∣∣
∫

ν ′Φ(t)Φ′(t)ν dt (70)

= Op(n
− γ

2γ + 1
+ β/3

) (71)

uniformly over h ∈ Hγ(B).

It follows upon using (63) that

tr (M(m) − M̂(m))2 = Op(m n− 2γ
2γ+1

+2β/3) = Op(n
−β

3 ) → 0,

as desired. �

6 Asymptotic Relative Sufficiency

When Assumption B is not satisfied we have needed to require α > 1 in Theorems 4.1, 5.1 and

5.3. This requirement may be undesirably strong for some applications. The following theorem

proves a result involving only the requirement α > 1/2. This result is formally weaker than that

in the earlier theorems but should serve nearly as well in practice.

The notion of Pitman efficiency provides the motivation for the formulation that follows, as

well as suggesting the terminology we use. That notion compares two sequences {ϕ1,n} and {ϕ2,n}
of level α statistical tests for a particular testing problem. {ϕ1,n} is asymptotically as efficient as

{ϕ2,n} if ϕ1,n has asymptotically the same (or greater) power than ϕ2,n∗ at all local alternatives

where n∗ = n∗(n) may have n∗ < n but satisfies lim n∗/n → 1.

Corresponding to this idea we consider two sequences {Vn} and {Wn} as in Section 3.4. We

say {Vn} is “asymptotically relatively sufficient” for {Wn} if {Vn} � {Wn∗} for some sequence

n∗ = n∗(n) with

lim sup
n→∞

n∗(n)

n
� 1. (72)

In practice one often has a sequence of procedure {δn} based on Wn whose risks R(f, δn) (based
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on uniformly bounded losses {Ln}) satisfy

lim sup
n→∞

sup
f∈F

R(f, δn)

R(f, δn∗)
� 1. (73)

If this is the case and if {Vn} is relatively asymptotically sufficient for {Wn} then we can construct

a procedure δ∗n from Vn according to δ∗n = δn∗(νn(Vn)) where νn is the (randomized) sufficiency

map from Vn to Wn∗ , and

lim sup
n→∞

sup
f∈F

R(f, δn)

R(f, δn∗)
→ 1, (74)

no matter what are δn and Ln.

We state the following result only for the case where H is known. An analogous result holds

when H is unknown as in Section 5.3.

Theorem 6.1 Assume H is a known function satisfying (33). Assume (19) and (23) hold and

F ⊂ Sα(B) for some fixed known values of α,B. Then there is an n∗ = n∗(n) � n with

lim
n∗(n)

n
= 1 (75)

such that

{Xi, Yi : i = 1, . . . , n} :→ Z̃(m)
n ∼ {Z(m)

n∗ }. (76)

Hence {Xi, Yi : i = 1, . . . , n} is asymptotically relatively sufficient for {Z(m)
n }. The randomized

mapping yielding (76) is described in (79) below.

Proof: Through the assertion (46) the proof is the same as that of Theorem 5.1. Then choose

n∗ < n but satisfying (75) so that

lim
n→∞

P{ inf
1�k�m

mNk > n∗ hk} = 1. (77)

(It suffices to choose n∗ = n − n1/2+ε for any 0 < ε < 1/2.) Next, define

A∗
n =

[
M(m) − 1

m

∑ 1

hk

Φ
(m)

k (Φ
(m)

k )′
]

+

. (78)

It is easy to show using (77) that P (A∗
n is positive definite ) → 1. (In other words, with

probability tending to 1 the “positive part” symbol is unnecessary in (78).) Let

V ∗
n ∼ Nm(0, A∗

n/n∗). (79)

Then Z̃
(m)
n + V ∗

n has the same distribution as Z
(m)
n∗ . This proves the final assertion of (76). �
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7 Proofs

The following two lemmas verify assertions made in Section 4.1.

Lemma 7.1 Assume {ϕj} is the cosine basis of Section 2.4 or the usual Fourier sine-cosine basis.

Assume F ⊂ Sα(B) for some α > 1/2. Then (23) is satisfied whenever

m(n)

n
1
2α

−→ ∞. (80)

Remark: Since α > 1/2 sequences exist satisfying both (19) and (80). With further prepa-

ration this lemma could be generalized to apply to a variety of other useful bases related to the

Fourier basis.

Proof: To be specific we consider the cosine basis. (The proof for the sine-cosine basis is

similar.) Direct calculation yields for 2 � j < l and x ∈ Ik

ϕj(x)ϕl(x) =
m2

8π2jl

[
sin(

πk(j − 1)

m
)(1 − cos

π(j − 1)

m
) + cos(

πk(j − 1)

m
) sin(

π(j − 1)

m
)

]
·
[
sin(

πk(l − 1)

m
)(1 − cos

π(l − 1)

m
) + cos(

πk(l − 1)

m
) sin(

π(l − 1)

m
)

]
(81)

It follows that for 2 � j < l ∫
ϕj(t)ϕl(t)dt = 0 (82)

since
m∑

k=1

sin(
πk(j − 1)

m
) cos(

πk(l − 1)

m
) = 0

and similarly for the other relevant sums over k.

Hence, for j 
= l ∫
(ϕj(t) − ϕj(t))(ϕl(t) − ϕl(t))dt = 0 (83)

We can then write

n

∫
(f(t) − f(t))2dt = n

∫ [ ∞∑
j=1

θj(ϕj(t) − ϕj(t))

]2

dt

=
∞∑

j=1

θ2
j

∫
(ϕj(t) − ϕj(t))

2dt. (84)
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For 1 � j � m write ∫
(ϕj(t) − ϕj(t))

2dt <
1

m2

∫
|ϕ′

j(t)|2dt

<
j2

m2
, (85)

and for j � m + 1 ∫
(ϕj(t) − ϕj(t))

2dt �
∫

ϕ2
j(t)dt = 1.

Combining these simple facts with (84) and using F ⊂ Sα(B), α > 1/2 and (80) yields

n

∫
(f(t) − f(t))2dt =

n

m2

m∑
j=1

j2θ2
j + n

∞∑
j=m+1

θ2
j

� n

m2α

m∑
j=1

j2αθ2
j +

n

m2α

∞∑
j=m+1

j2αθ2
j

� n

m2α
B −→ 0. (86)

This verifies (23). �

The next result applies to compactly supported wavelet bases. The Haar basis has special,

convenient properties. Otherwise we need to assume that the basis functions are differentiable

and satisfy ∫
(ϕ′

j(t))
2dt � cj2 j = 1, . . . , (87)

for some c < ∞. For wavelet bases presented in the double index subscript system of Section 2.3

this condition will be satisfied so long as∫
(ϕ′(t))2dt < ∞.

Lemma 7.2 Let {ϕj(t)} correspond to a compactly supported wavelet basis. Assume that either

{ϕj(t)} is the Haar basis or that (87) is satisfied. Suppose F ⊂ Sα(B) for some α > 1/2. Then

(23) satisfied whenever
m(n)

n1/2α log n
−→ ∞ (88)

and m(n) = 2k(n) for some k = 1, . . . .

Proof: For the Haar basis and m(n) = 2J1 , a power of 2, we write (as in Brown et.al. (1999))

n

∫
(f(t) − f(t))2dt = n

∞∑
j=m+1

θ2
j � n

m2α

∞∑
j=m+1

j2αθ2
j � Bn

m2α
−→ 0. (89)
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For other wavelet bases we need to write expressions in the double index subscript form.∫
(f(t) − f(t))2dt =

∑
j=J0

θJ0,k(ϕJ0,k − ϕJ0,k(t)) +

J1∑
j=J0+1

2j−1−1∑
k=0

θj,k(ψj,k(t) − ψj,k(t))

2

(90)

� J1

(
∑
j=J0

θJ0,k(ϕJ0,k − ϕJ0,k(t)))
2 +

J1∑
j=J0+1

(
2j−1−1∑

k=0

θj,k(ψj,k(t) − ψj,k(t)))
2


Since the wavelets are compactly supported there is a constant D such that |k′−k| � D implies

(ψj,k(t) − ψj,k(t))
2(ψj,k′(t) − ψj,k′(t))2 = 0 ∀ t. (91)

Using (87) as in (85) we then have∫
(
2j−1−1∑

k=0

θj,k(ψj,k(t) − ψj,k(t))
2dt � 2D

2j−1−1∑
k=0

θ2
j,k(ψj,k(t) − ψj,k(t))

2dt

� 2DC
2j−1−1∑

k=0

22j

m2
θ2

j,k. (92)

Combining the above and using the assumption that F ⊂ Sα(B) as at (86) yields

n

∫
(f(t) − f(t))2dt � 4nDC(J1

J1∑
j=J0

2j

(2j−1−1)∨(2J0−1−1)∑
k=0

θ2
j,k +

∞∑
j=J1+1

2j−1−1∑
k=0

θ2
j,k)

= O(
J1n

m1/2α
) −→ 0 (93)

uniformly for f ∈ F , since J1 = O(log n). �

Remark: A variant of the above arguments can yield a (weaker) result for more general bases.

Let {ϕj} be any basis for which ϕj are differentiable and satisfy (87). Suppose F ⊂ Sα(B) for

some α > 1. Then (23) is satisfied whenever

m(n)

n1/α
−→ ∞. (94)

The argument does not use the orthogonality in (83) or (91) but instead directly uses the Cauchy-

Schwartz inequality to write

n

∫
(f(t) − f(t))2dt � 2n{m

m∑
j=1

θ2
j

∫
(ϕj(t) − ϕj(t))

2dt +
∞∑

j=m+1

θ2
j}

= O(
m(n)

n1/α
) −→ 0. (95)
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We conclude with the proof of Theorem 5.2 and a discussion of its regularity conditions.

The following two lemmas prove assertions made in Section 5.3.

Lemma 7.3 Assume {ϕj} is as in Lemma 7.1. Assume h−1 ∈ Sα(B), α > 1/2, for this basis.

Let m, m∗ each satisfy (23) for some α > 1/2 and also (56). Then (57) is satisfied.

Proof: Again, take {ϕj} to be the Fourier cosine basis as defined above (7). Note that for

i, j � 2∫ 1

0

ϕi(t)ϕj(t)ϕk(t)dt =


√

2/2 if k − 1 = |j − i| 
= 0 or k − 1 = (i − 1) + (j − 1)

0 otherwise
(96)

Analogous expressions when min(i, j) = 1 or i = j are easily derived.

Since h−1 ∈ Sα(B) we can write

h−1(x) =
∞∑

k=1

βkϕk(x)

where ∑
k2αβ2

k < ∞. (97)

Then for i < j

Mij =

∫
(

∞∑
k=1

βkϕk(x))ϕi(x)ϕj(x)dx (98)

=

 (1/
√

2)(βj−i + βi+j−1) if i � 2

βk if i = 1

This yields

m∗∑
i=1

∞∑
j=(m+m∗)/2

M2
ij � 2

m∗∑
i=1

∞∑
j=(m+m∗)/2

(β2
j−i + β2

i+j−1) (99)

� 4
m∗∑
i=1

∞∑
j=(m+m∗)/2

1

(m+m∗
2

− i)2α
(j − i)2αβ2

j−i

= O(
m∗∑
i=1

1

(m − m∗)2α
)

= O(
m∗

(m − m∗)2α
) → 0

since α > 1/2. The other double sum in (56) is handled similarly. �.

32



Lemma 7.4 Assume {ϕj} is as in Lemma 7.1. Then the {Φk : k = 1, . . . ,m} are orthogonal and

non-zero. Hence, in particular, they are linearly independent and so satisfy (57).

Proof : The orthogonality follows from (79). A direct computation shows they are all non-zero,

since m/n → 0. �

Proof of Theorem 5.2:

We first prove (54). Partition Zn as (Zn) = (Z ′
n(1), Z

′
n(2), Z

′
n(3)). Zn(1) is m∗ dimensional and

Zn(2) is (m − m∗) dimensional. Similarly write Z
(m)
n = (Z

(m)
n(1)

′
,Z

(m)
n(2)

′
). In an analogous fashion

partition M as

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 (100)

where M11 is m∗×m∗ and M22 is (m−m∗)× (m−m∗), and the remaining blocks are determined

from this. Given Z
(m)
n define Z0

n = (Z
(0)
n(1)

′
, Z

(0)
n(2)

′
, Z

(0)
n(3)

′
) by

Z0
n(1) = Z

(m)
n(1), Z0

n(2) = Z
(m)
n(2) (101)

and

Z0
n(3) = V + M32M

−1
22 Z

(m)
n(2)

with

V ∼ N(0,M33 − M32M
−1
22 M23).

As a consequence of (23) it suffices as in (26) to prove asymptotic equivalence when

E(Zn(2)) = E(Z
(m)
n(2)) = 0 = E(Zn(3)).

We henceforth assume (101) holds. Then

E(Z0
n) = E(Zn). (102)

Let m0 denote the infinite dimensional covariance matrix of Z0 and partition M0 analogous to

(100). Then

M0
(ij) M(ij) except for i = 1, j = 3ori = 3, j = 1.

M0
(13) = M(12)M

−1
(22)M(23) = M ′

(31).
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It follows from this as in (62) that (uniformly in n)

tr(I − M−1M0)2 = O(tr(M − M0)2) (103)

= O(tr(M0
(13)M

0
(31) + M(31)M(13))).

Now,

tr(M(31)M(13)) =
m∗∑
i=1

∞∑
j=m

M2
ij → 0 (104)

by (57).

The eigenvalues of M−1
(22) are bounded away from 0, as has already been exploited in (104).

Hence

tr(M0
(13)M

0
(31)) = tr(M0

(12)M
−1
(22)M(23)M(32)M

−1
(22)M(21)) (105)

= O(tr(M0
(12)M

0
(23)M

0
(32)M

0
(21))).

Finally,

tr(M0
(12)M

0
(23)M

0
(32)M

0
(21)) = 2

m∗∑
i=1

m∑
j=m∗+1

∞∑
k=m+1

M2
ijM

2
jk (106)

O


m∗∑
i=1

m∑
j= m+m∗

2
+1

M2
ij +

m+m∗
2∑

j=m∗+1

∞∑
k=m+1

M2
jk

 (107)

since ∞∑
j=1,j �=i

M2
ij = O(1). (108)

(108) is a general result about positive definite matrices with eigenvalues uniformly bounded

away from 0 and ∞.

Let A =

 a(11) A(12)

A(21) A(22)

. Then

0 < (A−1)11 = (a(11) − A(12)A
−1
(22)A(21))

−1.

Furthermore α = maxeig A−1
22 � ( mineig A)−1. Hence

0 < a(11) − αA12A21 = a(11) − α
∑
j �=1

a2
1j � α−1 − α

∑
j �=1

a2
1j.
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(104) and (106) combined with the assumption (57) prove

tr(I − M−1M0)2 → 0.

This, together with (102) yields (54), in view of (17).

The proof of (55) proceeds in three steps, with matching descriptions of the asymptotic equiv-

alence mappings. We first show

{Zn} � {Z∗
n} ≈ {Z̃(m)

n } (109)

with Z∗
n as defined below (50).

Let

Z(t) =
∞∑

j=1

∫ t

0

(Zn)jϕj(x)dx.

Z(t) is the solution to the stochastic differential equation

dZ(t) = f(t)dt +
1√

nh(t)
dB(t) (110)

where B(t) is standard Brownian motion. See, for example, Steele (2001). Let

Z
(m)

n =

∫
Φ

(m)
(t)dZ(t).

Then Z
(m)

n is normal with mean

E(Z
(m)

n ) =

∫
Φ

(m)
(t)f(t)dt = Θ

(m)

and

Cov(Z
(m)

n ) =

∫
Φ

(m)
(t)(Φ

(m)
(t))′

1

nh(t)
dt = (M (m) − A(m)

n )/n

with M (m) and A
(m)
n as in the proof of Theorem 5.1. Hence Z

(m)

n produced from Zn has the same

distribution as Z∗
n defined below (51). It is shown in the proof of Theorem 5.1 that {Z∗

n} ≈ {Z(m)
n }.

This proves the assertion contained in (108). �

The next step of (58) is to establish

{Z̃(m)
n } � {Ȳk} (111)

To do this note that the formula in (21) corresponds to a linear mapping of {Y k : k = 1, . . . ,m}
to Z̃

(m)
n . If the set of vectors {Φk : k = 1, . . . ,m} are linearly independent as in (58) then this

mapping is invertible, and hence {Z̃(m)
n } :−→ {Y k} in a direct way. This yields (111).
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Finally we need to establish that

{Ȳk} � {(Xi, Yi)} (112)

This assertion is proved in Brown and Low (1996) under the condition (22). The necessary

randomization is described in detail these and in related to that used in Remark 5.2.
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